Saltar al contenido
Deberes escolares » Charlas educativas » Cómo las estadísticas pueden ser engañosas – Mark Liddell – Charla TED-Ed

Cómo las estadísticas pueden ser engañosas – Mark Liddell – Charla TED-Ed

Charla «Cómo las estadísticas pueden ser engañosas – Mark Liddell» de TED-Ed en español.

Ver la lección completa: http://ed.ted.com/lessons/how-statistics-can-be-misleading-mark-liddell

Las estadísticas son convincentes. Tanto es así que personas, organizaciones y países enteros basan algunas de sus decisiones más importantes en los datos estadísticos. Sin embargo, cualquier conjunto de datos estadísticos podría contener algo que ponga los resultados completamente patas arriba. Mark Liddell investiga la paradoja de Simpson.

Lección de Mark Liddell, animación de Tinmouse Animation Studio.

  • Autor/a de la charla: Mark Liddell
  • Fecha de grabación: 2016-01-14
  • Fecha de publicación: 2020-01-16
  • Duración de «Cómo las estadísticas pueden ser engañosas – Mark Liddell»: 244 segundos

 

Traducción de «Cómo las estadísticas pueden ser engañosas – Mark Liddell» en español.

Las estadísticas son convincentes.

Tanto es así que personas, organizaciones y países enteros basan algunas de sus decisiones más importantes en datos estadísticos.

Pero hay un problema en ellos.

Cualquier conjunto de datos estadísticos podría contener algo que puede poner los resultados al revés y completamente patas arriba.

Por ejemplo, imagina que tienes que elegir entre dos hospitales para la operación de cirugía de un pariente anciano.

De cada 1000 pacientes hospitalizados 900 sobrevivieron en el hospital A, mientras que solo 800 lo hicieron en el Hospital B.

Así que parece que el hospital A es la mejor opción.

Pero antes de tomar la decisión, recuerda que no todos los pacientes llegan al hospital con el mismo nivel de salud.

Y si dividimos los últimos 1000 pacientes de cada hospital en los que llegaron en buen estado de salud y los que llegaron en mal estado, esto empieza a verse muy diferente.

El hospital A solo tenía 100 pacientes que llegaron en mal estado de salud, de los cuales 30 sobrevivieron.

Pero el hospital B tenía 400, y pudieron salvar a 210.

Así que el Hospital B es la mejor opción para los pacientes que acuden al hospital con problemas de salud, con una tasa de supervivencia del 52,5 %.

¿Y si la salud de tu familiar es buena cuando llega al hospital? Curiosamente, el hospital B sigue siendo la mejor opción, con una tasa de supervivencia de más del 98 %.

¿Cómo puede el hospital A tener una mejor tasa de supervivencia si el hospital B tiene mejores tasas de supervivencia de pacientes en cada grupo? Con lo que nos topamos aquí, es con un caso de la paradoja de Simpson, donde el mismo conjunto de datos puede mostrar tendencias opuestas dependiendo de cómo se agrupan.

Pasa a menudo cuando en datos agregados se oculta una variable condicional, conocida a veces como variable oculta, que es un factor adicional oculto que influye mucho en los resultados.

Aquí, el factor oculto es la proporción relativa de pacientes que llegan en buen o mal estado de salud.

La paradoja de Simpson no es solo un escenario hipotético.

Aparece de vez en cuando en el mundo real, a veces en contextos importantes.

Un estudio en el Reino Unido parecía demostrar que los fumadores tenían una mayor tasa de supervivencia que los no fumadores durante un período de 20 años.

Es decir, hasta que dividieron a los participantes por grupo de edad, entonces demostraron que los no fumadores eran mucho mayores en promedio, y, por tanto, con mayor probabilidad de morir durante el período de test, precisamente porque vivían más tiempo en general.

En este caso, los grupos de edad son la variable oculta y son vitales para interpretar correctamente los datos.

En otro ejemplo, un análisis de los casos de pena de muerte de Florida no parecía revelar ninguna disparidad racial en las sentencias entre los acusados ​​blancos y negros condenados por asesinato.

Pero la división de los casos por raza de la víctima contó una historia diferente.

En cualquier situación, los acusados ​​negros tenían mayor probabilidad de ser condenados a muerte.

La tasa global de la sentencia algo superior para los acusados ​​blancos se debió al hecho de que los casos con víctimas blancas tenían mayor probabilidad de obtener una sentencia de muerte que en los casos donde la víctima era negra, y la mayoría de las muertes ocurrieron entre personas de la misma raza.

Y ¿cómo evitar caer en la paradoja? Desafortunadamente no hay una receta única para todos los casos.

Los datos pueden agruparse y dividirse en varias formas, y los números generales a veces pueden dar una imagen más precisa que los datos divididos en categorías erróneas o arbitrarias.

Lo que podemos hacer es estudiar cuidadosamente las situaciones reales que describen las estadísticas y considerar si las variables ocultas deberían estar presentes.

De lo contrario, nos hacemos vulnerables a aquellos que usan los datos para manipular a otros y promover sus propias agendas.

https://www.ted.com/talks/mark_liddell_how_statistics_can_be_misleading/

 

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *