Numerial modelling based on the multiscale homogenization theory. application in composite materials and structures

Tesis doctoral de Hiram Badillo Almaraz

En esta tesis se propone y desarrolla un método de homogeneización multi-dominio basado en una técnica en dos escalas. El método es capaz de analizar estructuras de materiales compuestos con varias distribuciones periódicas dentro de un mismo continuo mediante la partición de todo el dominio del material compuesto en subestructuras utilizando la teoría clásica de homogeneización a través de una formulación estándar de mecánica de medios continuos de primer orden. La necesidad de desarrollar este método multi-dominio surgió porque los métodos actuales de homogeneización se basan en el supuesto de que todo el dominio del material está representado por solo una distribución periódica o cuasi-periódica. Sin embargo, en algunos casos, la estructura puede estar formada por más de un tipo de distribución de dominio periódico. los principios teóricos desarrollados en el método de homogeneización multi-dominio se aplicaron para ensamblar una herramienta computacional basada en dos problemas de valores de contorno anidados, los cuales son representados por un código de elementos finitos (fe) en dos escalas: a) una escala global, que trata el material compuesto como un material homogéneo. Esta escala se ocupa de las condiciones de contorno, las cargas aplicadas y los diferentes subdominios periódicos (o cuasi-periódicos) que puedan existir en el material compuesto; y b) una escala local, que obtiene la respuesta homogenizada de un volumen representativo o celda unitaria. Esta escala se ocupa de la geometría, y de la distribución espacial de los constituyentes del compuesto así como de sus propiedades constitutivas. el método se basa en la hipótesis de periodicidad local derivada de la periodicidad de la estructura interna del material. La implementación numérica de las restricciones de los desplazamientos y las fuerzas derivadas de la periodicidad se realizaron por medio del método de multiplicadores de lagrange. La formulación incluye un método para calcular el tensor constitutivo tangente no-lineal homogeneizado una vez que el umbral de la no-linealidad de cualquiera de las celdas unitarias ha sido superado. El procedimiento se basa en llevar a cabo una derivación numérica aplicando una técnica de perturbación. El tensor constitutivo tangente se calcula para cada incremento de carga y para cada iteración del análisis una vez que la estructura ha entrado en el rango no-lineal. El método de perturbación se aplicó tanto en la escala global como en la local con el fin de analizar la efectividad del método en ambas escalas. Se lleva a cabo un proceso de paralelización en el método con el fin de acelerar el proceso de cómputo debido al enorme coste computacional que requiere la solución iterativa incremental anidada. Se investiga el efecto de ablandamiento por deformación en el material usando el método de homogeneización en dos escalas a través de un enfoque de fractura discreta. Se estudió la objetividad en el mallado dentro de la formulación clásica de fe en una escala y luego los conceptos expuestos se extrapolaron en el marco de la homogeneización de dos escalas. Se enfatiza la importancia de la longitud característica del elemento en un análisis multi-escala en el cálculo de la energía específica disipada cuando se produce el efecto de ablandamiento. se presentan varios ejemplos para evaluar la propuesta computacional desarrollada en esta investigación. Se estudiaron diferentes configuraciones de compuestos que incluyen diferentes tipos de materiales, así como compuestos que presentan ablandamiento después de que el punto de fluencia del material se alcanza (usando daño y plasticidad) y compuestos con zonas que presentan altos gradientes de deformación. Los ejemplos se llevaron a cabo en materiales compuestos con uno y con varios dominios periódicos utilizando diferentes configuraciones de células unitarias. Los ejemplos se comparan con soluciones de referencia obtenidas con el método clásico de elementos finitos en una escala.

 

Datos académicos de la tesis doctoral «Numerial modelling based on the multiscale homogenization theory. application in composite materials and structures«

  • Título de la tesis:  Numerial modelling based on the multiscale homogenization theory. application in composite materials and structures
  • Autor:  Hiram Badillo Almaraz
  • Universidad:  Politécnica de catalunya
  • Fecha de lectura de la tesis:  16/04/2012

 

Dirección y tribunal

  • Director de la tesis
    • Sergio Horacio Oller Martínez
  • Tribunal
    • Presidente del tribunal: eugenio Oñate ibáñez de navarra
    • José Luis Pérez aparicio (vocal)
    • (vocal)
    • (vocal)

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio