Tesis doctoral de Leseduarte Milan M. Carme
Durante los ultimos treinta años, el estudio de la estructura periodica de los sistemas dinamicos discretos ha sido una de las areas de mas actividad investigadora. en esta memoria se contribuye con nuevos resultados en el estudio de esta estructura para dimension 1. sea o el espacio topologico sigma obtenido identificando un punto de la circunferencia y un extremo del intervalo a un punto o. Una o aplicacion es una aplicacion f:o-o continua tal que f tiene puntos fijos y puede ser estudiada sin utilizar numeros de rotacion. En esta memoria caracterizamos el conjunto de periodos de cualquier o aplicacion. sea t el espacio topologico trebol obtenido identificando las coordenadas enteras del segmento (0,3) a un punto o. sea e un subespacio de t. Una e aplicacion es una aplicacion f:e-e continua tal que f(0)=0. El conjunto k c n es el nucleo de periodicidad total de e si verifica las dos siguientes condiciones: (1) si f es una e aplicacion y k c per(f), entonces per(f) = n. (2) si s c n verifica que para cada e aplicacion f, s c per(f) implica per(f) = n, entonces k c s. Caracterizamos el nucleo de periodicidad total de t y todos sus subespacios propios.
Datos académicos de la tesis doctoral «Conjunt de periodes i nucli de periodicitat total per aplicacions continues unidimensionals.«
- Título de la tesis: Conjunt de periodes i nucli de periodicitat total per aplicacions continues unidimensionals.
- Autor: Leseduarte Milan M. Carme
- Universidad: Autónoma de barcelona
- Fecha de lectura de la tesis: 01/01/1996
Dirección y tribunal
- Director de la tesis
- Jaume Llibre Salo
- Tribunal
- Presidente del tribunal: LLuis Alseda Soler
- Francisco Balibrea Gallego (vocal)
- Wieslaw Szlenk (vocal)
- Angel Rodriguez Mendez (vocal)