Soluciones numericas continuas de ecuaciones diferenciales matriciales con cotas de error a priori.

Tesis doctoral de Enrique Ponsoda Miralles

En esta memoria se consideran dos tipos de ecuaciones diferenciales matriciales. En primer lugar se construyen soluciones numericas para problemas de valores iniciales matriciales utilizando metodos lineales multipaso matriciales. A continuacion, via interpolacion lineal matricial se construyen soluciones numericas continuas con cotas de error expresados en terminos de los datos. particular atencion se prestan a las ecuaciones de tipo riccati y lyapunov generalizadas con coeficientes variables. Sistemas acoplados de ecuaciones en derivadas parciales (considerados matricialmente) son tratados para el caso de problemas mixtos (iniciales con condiciones de contorno). En primer lugar se construye solucion exacta en forma de serie. A continuacion se trunca la serie matricial de modo que en un dominio acotado el error este uniformemente acotado por una cantidad prefijada de antemano.

 

Datos académicos de la tesis doctoral «Soluciones numericas continuas de ecuaciones diferenciales matriciales con cotas de error a priori.«

  • Título de la tesis:  Soluciones numericas continuas de ecuaciones diferenciales matriciales con cotas de error a priori.
  • Autor:  Enrique Ponsoda Miralles
  • Universidad:  Politécnica de Valencia
  • Fecha de lectura de la tesis:  01/01/1994

 

Dirección y tribunal

  • Director de la tesis
    • Lucas Jodar Sanchez
  • Tribunal
    • Presidente del tribunal: Antonio Marquina Vila
    • Harley Weston (vocal)
    • Allan Grenwell Law (vocal)
    • Enrique Navarro Torres (vocal)

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio