Torsores, extensiones y cohomología.

Tesis doctoral de Vale Gonsalves M. Jesús

En esta memoria se estudia la relacion entre torsores y extensiones en un tipo de categorias algebraicas no abelianas que incluye la de grupos algebras de lie algebras asociativas y algebras asociativas conmutativas. se demuestra que en una categoria de interes equilibrada (h elevado a n x-x pi) g sub x = 0 para m menor e igual de 1 si pi esun objeto grupo abeliano inyectivo) existe un isomorfismo de grupos abelianos entre tors elevado a n sub u (x 1 x a1x x) y el conjunto de clases de equiValencia de n-extensiones de x por el x-modulo a. tambien se da la interpretacion de los grupos tors elevado a n (a 1 a a1a a) en la categoria de algebras asociativas conmutativas y unitarias en terminos de extensiones ejemplo que corresponde a un caso no equilibrado.

 

Datos académicos de la tesis doctoral «Torsores, extensiones y cohomología.«

  • Título de la tesis:  Torsores, extensiones y cohomología.
  • Autor:  Vale Gonsalves M. Jesús
  • Universidad:  Santiago de compostela
  • Fecha de lectura de la tesis:  01/01/1982

 

Dirección y tribunal

  • Director de la tesis
    • Alfredo Rodriguez Grandjean Lopez Varcarcel
  • Tribunal
    • Presidente del tribunal: Alfredo Rodriguez Grandjean Lopez Varcarcel
    • Joaquin Arregui Fernandez (vocal)
    • Eduardo Garcia-rodeja Fernandez (vocal)
    • Juan Gabriel Tena Ayuso (vocal)

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio