Tesis doctoral de Pedro Jorge Sequeira Cardoso
El estudio de soluciones meta-heurísticas basadas en el paradigma del ant colony optimization (aco) para el múltiple objetive minimum spanning trees y los problemas combinatorios relacionados es la principal preocupación de esta investigación. en la clasificación comúnmente validada de la complejidad de los problemas, se clasifica el problema de las múltiple minimum spanning trees como np-completo. Además, como en la generalidad de los problemas de optimización con múltiples objetivos, la solución de un problema múltiple objetive minimum sapnning trees es un conjunto de soluciones de compromiso en el sentido que para mejorar uno de los objetivos es necesario por lo menos el empeorar uno los otros, lo que es una preocupación importante en un punto de vista práctico. en la primera parte de la investigación, se hace un análisis teórico del problema para complementar los resultados conocidos. Este análisis corrobora el hecho que en la práctica el uso de métodos exactos de solucionar los problemas múltiple objetive minimum spanning trees se aplica solamente en circunstancias especificas. Esto implica que le uso de métodos de aproximación se debe considerar como alternativa para solucionar el problema. particularmente, se proponen dos métodos basados en el paradigma del aco: el múltiple objetive network optimization based on an aco (monaco) y el depth ant explorer – dante. El monaco utiliza un conjunto de los rastros de fermonas y heurísticas específicas para aproximar el conjunto de pareto. El dante es una mejora del monaco que aplica un procedimiento de búsqueda en profundidad basado en las mejores soluciones que se obtienen durante el proceso, de modo a mejor explotar el espacio de la búsqueda. los métodos propuestos son testados con problemas de múltiples objetivos seleccionados mejorando los resutlados obtenidos previamente por otros autores. Para testar algoritmos monaco y dante sobre el problema del múltiple object
Datos académicos de la tesis doctoral «Algoritmos de colonias de hormigas para optimización combinatoria con múltiples objetivos: aplicaciones a los problemas deminimum spanning trees«
- Título de la tesis: Algoritmos de colonias de hormigas para optimización combinatoria con múltiples objetivos: aplicaciones a los problemas deminimum spanning trees
- Autor: Pedro Jorge Sequeira Cardoso
- Universidad: Sevilla
- Fecha de lectura de la tesis: 02/03/2007
Dirección y tribunal
- Director de la tesis
- Alberto Márquez Pérez
- Tribunal
- Presidente del tribunal: Francisco Herrera triguero
- Gomes tomás Ana paula nunes (vocal)
- enrique Mérida casermeiro (vocal)
- María de los angeles Garrido vizuete (vocal)