Fuzzy quasi-metric spaces: bicompletion, contractions on product spaces, and applications to access predictions

Tesis doctoral de Francisco Castro Company

Desde que l.A. Zadeh presentó la teoría de conjuntos difusos en 1965, esta se ha usado en una amplia serie de áreas de las matemáticas y se ha aplicado en una gran variedad de escenarios de la vida real. Estos escenarios cubren procesos complejos sin modelo matemático sencillo tales como dispositivos de control industrial, reconocimiento de patrones o sistemas que gestionen información imprecisa o altamente impredecible. la topología difusa es un importante ejemplo de uso de la teoría de l.A. Zadeh. Durante años, los autores de este campo han buscado obtener la definición de un espacio métrico difuso para medir la distancia entre elementos según grados de proximidad. el presente trabajo trata acerca de la bicompletación de espacios casi-métricos difusos en el sentido de kramosil y michalek. Sherwood probó que todo espacio métrico difuso admite completación que es única excepto por isometría basándose en propiedades de la métrica de lévy. Probamos aquí que todo espacio casi-métrico difuso tiene bicompletación usando directamente el supremo de conjuntos en [0,1] y límites inferiores de secuencias en [0,1] en lugar de usar la métrica de lévy. aprovechamos tanto la bicompletitud y bicompletación de espacios casi-métricos difusos como las propiedades de los espacios métricos difusos y difusos intuicionistas para presentar varias aplicaciones a problemas del campo de la informática. así estudiamos la existencia y unicidad de solución para las ecuaciones de recurrencia asociadas a ciertos algoritmos formados por dos procedimientos recursivos. Para analizar su complejidad aplicamos el principio de contracción de banach tanto en un producto de casi-métricas no-arquimedianas en el dominio de las palabras como en la casi-métrica producto de dos espacios de complejidad casi-métricos de schellekens. estudiamos también una aplicación de espacios métricos difusos a sistemas de información basados en localidad de accesos. Para ello usamos clases de equiValencia para comparar elementos y aprovechamos la idoneidad de las construcciones difusas para modelar problemas que evolucionan con el tiempo. De esta forma definimos un marco para decidir acerca de la clasificación de un elemento en clases. Como extensión natural del modelo usaremos la noción de un espacio métrico intuicionista para modelar el grado de proximidad y el de lejanía de dos elementos de un conjunto difuso.

 

Datos académicos de la tesis doctoral «Fuzzy quasi-metric spaces: bicompletion, contractions on product spaces, and applications to access predictions«

  • Título de la tesis:  Fuzzy quasi-metric spaces: bicompletion, contractions on product spaces, and applications to access predictions
  • Autor:  Francisco Castro Company
  • Universidad:  Politécnica de Valencia
  • Fecha de lectura de la tesis:  15/06/2010

 

Dirección y tribunal

  • Director de la tesis
    • Salvador Romaguera Bonilla
  • Tribunal
    • Presidente del tribunal: valentín Gregori gregori
    • hans-peter albert Kí¼nzi (vocal)
    • Manuel Sanchis lopez (vocal)
    • Francisco Javier Gutierrez García (vocal)

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio