Tesis doctoral de Talavera Usano Cesar Felix
Se ha realizado un analisis semiclasico de modelos de gravedad dilatonica bidimensional que preserve la invariancia weyl de la accion clasica de la materia. Al añadir un termino local a la accion de polyarov de la teoria efectiva, la anomalia de traza de su tensor energia-momento se transforma en una anomalia de virasord, y da lugar tambien a radiacion hawking. mediante redefiniciones de los campos, se restaura la covariancia. La teoria resultante mantiene la solubilidad de la teoria clasica. Aplicado este mecanismo al modelo c.G.H.S., Da lugar al modelo r.S.T. Y al modelo b.P.P., Y puede permitir construir modelos solubles para la evaporacion de agujeros negros de schwarzschild. se ha determinado el espacio fasico reducido del modelo c.G.H.S. finalmente, se ha tratado un esquema de cuantizacion exacta que mediante una reduccion hamiltoniana conduce a una teoria con un numero finito de grados de libertad, en la que se plantea una ecuacion de wheeler-dewin. Se ha determinado su espacio de hilbert como el formado por sus soluciones normalizables. Este resultado es equivalente al que se obtiene de una cuantizacion covariante del espacio fasico.
Datos académicos de la tesis doctoral «Aspectos cuanticos de modelos de gravedad dilatonica y agujeros negros.«
- Título de la tesis: Aspectos cuanticos de modelos de gravedad dilatonica y agujeros negros.
- Autor: Talavera Usano Cesar Felix
- Universidad: Universitat de valéncia (estudi general)
- Fecha de lectura de la tesis: 01/01/1996
Dirección y tribunal
- Director de la tesis
- Jose Navarro Salas
- Tribunal
- Presidente del tribunal: José María Cerveró Santiago
- Manuel Asorey Carballeira (vocal)
- Victor Aldaya Valverde (vocal)
- Enric Verdaguer Oms (vocal)