Lie systems and applications to quantum mechanics

Tesis doctoral de Javier De Lucas Araujo

Esta tesis comienza con estudio geométrico de los llamados sistemas de lie. Dichos sistemas son sistemas no autónomos de ecuaciones diferenciales cuya solución general puede ser expresada a traves de ciertas familias de soluciones particulares y una serie de constantes. Dicho estudio geométrico es importante ya que permite realizar una gran cantidad de generalizaciones de la teoría a fin de aplicarla a ecuaciones diferenciales de orden superior, ecuaciones diferenciales en derivadas parciales asi como ciertas ecuaciones de schrodinger. en el campo de la integrabilidad, se analizan en esta tesis medios para encontrar ecuaciones diferenciales con coeficientes dependientes del tiempo que son integrables. También se analiza la aplicación de la teoria de los sistemas de lie a ecuaciones diferenciales de segundo orden y se recuperan y reinterpretan resutlados geometricos ya conocidos. diversos de los metodos anteriores sobre integrabilidad pueden ser estudiados en la aplicación de los sistemas de lie a la mecánica cuántica: estudio de condiciones de integrabilidad de sistemas cuanticos dependendientes del tiempo, aplicaciones a ciertos casos exactamente integrables, etc. A parte, el formalismo para la aplicación de los sistemas de lie en mecánica cuántica es detallado describiendo ciertos nuevos detalles. a parte de las generalizaciones anteriormente mencionadas, y desarrolladas en parte ya con anterioridad en otros trabajos, en dicha tesis se desarrollan otras generalizaciones completamente nuevas, como son los llamados sistemas de quasi-lie y las familias de sistemas de ecuaciones que admiten principios de superposición dependientes del tiempo. Estas generalizaciones tienen una gran utilidad ya que permiten utilizas los métodos desarrollados en la teoria de los sistemas de lie en un conjunto de sistemas mucho mas amplio. como aplicaciones particulares de la teoria de los sistemas de quasi-lie estudiamos sus aplicaciones en las ecuaciones de milne-pinney disipativas, en las ecuaciones de emden y en ciertos osciladores no lineales. Estos son solo pequeños ejemplos, pero el conjunto de ecuaciones que pueden estudiarse es muchisimo mas amplio.

 

Datos académicos de la tesis doctoral «Lie systems and applications to quantum mechanics«

  • Título de la tesis:  Lie systems and applications to quantum mechanics
  • Autor:  Javier De Lucas Araujo
  • Universidad:  Zaragoza
  • Fecha de lectura de la tesis:  23/10/2009

 

Dirección y tribunal

  • Director de la tesis
    • José Fernando Cariñena Marzo
  • Tribunal
    • Presidente del tribunal: Luis joaquín Boya
    • Juan pablo Ortega lahuerta (vocal)
    • eduardo Martínez fernández (vocal)
    • María no Santander navarro (vocal)

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio