Tesis doctoral de Gines Lopez Perez
Esta tesis se enmarca dentro de un tema que ha sido objeto de un intensivo estudio, como es la propiedad de radon-nikodym en espacios de banach. En ella se obtiene una nueva respuesta parcial al problema de la equiValencia entre las propiedades de radon-nilodym y krein-milman en espacios de banach, como principal resultado. para ello se caracteriza la propiedad del punto de continuidad en el ambiente de los espacios de banach con base shrinking. extendiendo esta ultima caracterizacion para espacios de asplund, se consigue tambien demostrar que la propiedad del punto de continuidad esta determinada por los subespacios con base shrinking, mejorando asi, en el ambiente de los espacios de asplund, un resultado obtenido por ghoussoub y maurey. la principal fuente de inspiracion, en esta tesis, es un trabajo de argyron, odell y rosenthal sobre la propiedad del punto de continuidad en el espacio de banach clasico co, de las sucesiones de escalares con limite cero, publicado en lecture notes, en el año 1.988.
Datos académicos de la tesis doctoral «Aportaciones al estudio de la propiedad del punto de continuidad en espacios de banach.«
- Título de la tesis: Aportaciones al estudio de la propiedad del punto de continuidad en espacios de banach.
- Autor: Gines Lopez Perez
- Universidad: Granada
- Fecha de lectura de la tesis: 01/01/1996
Dirección y tribunal
- Director de la tesis
- Mena Jurado Juan Francisco
- Tribunal
- Presidente del tribunal: Fernando Bombal Gordon
- Navarro Pascual Juan Carlos (vocal)
- Gilles Godefroy (vocal)
- ángel Rodríguez Palacios (vocal)