Tesis doctoral de Rossella Bartolo
Se estudian algunos problemas jglobales acerca de curvas en vaiedades de riemann y de lorentz con borde mediante métodos variacionales. Concretamente, se consideran las siguientes curvas: 1 geodésicas que unen dos puntos, 2 geodésicas cerradas y 3 trayectorias de partículas bajo un potencial. cuando se estudian en una variedad reimanniana m, jestas curvas sonpuntos críticos de funcionales acotados inferiormente sobre algunas variedades de hilbert. Con técnicas de penalización, se puede demostrar su existencia (y, a veces, multiplicidad) bajo hipótesis ajustadas sobre el borde (en nuestro estudio, no necesarimente diferenciable) de la variedad m. cuando m es una variedad lorentziana, debido a la indefinición de la métrica, los correspondientes funcionales son fuertemente indefinidos. Sin embargo, se aplican diversos principios variacionales que permiten obtener resultados de existencia para los tres tipos de curvas supracitadas. Estos resultados son aplicables a varios espciotiempos de interés en relatividad, generalmente estacionarios: kerr, reissner-nordstrom, schwarschild. tanto en el caso riemanniano como en el lorentziano se lleva a cabo un cuidadoso estudio de las distintas hipótesis de convexidad que deben hacerse sobre el borde de m para poder aplicar teoría de puntos críticos en variedades de dimensión infinita, y en especial teoría de morse y teoría de ljusternik-schnrelmann. en particular, se revisan y extienden los resultados anteriores sobre estos problemas.
Datos académicos de la tesis doctoral «Curvas criticas en variedades riemannianas y lorentzianas con borde.«
- Título de la tesis: Curvas criticas en variedades riemannianas y lorentzianas con borde.
- Autor: Rossella Bartolo
- Universidad: Granada
- Fecha de lectura de la tesis: 30/06/2000
Dirección y tribunal
- Director de la tesis
- Miguel Sánchez Caja
- Tribunal
- Presidente del tribunal: Garcia perez pedro Luis
- vieri Benci (vocal)
- david Arcoya alvarez (vocal)
- angel Fernandez-izquierdo (vocal)