Familias de leyes de algebras de lie nilpotentes.

Tesis doctoral de Antonio Jimenez Merchan

Se presentan en esta memoria resultados que pueden ser enmarcados dentro de los problemas de clasificacion de algebras de lie. En la primera parte se da un algoritmo que genera, en tiempo polinomial, familias de leyes de algebras de lie filiformes de dimension n. Se obtiene, de la aplicacion del algoritmo a traves de su implementacion en un lenguaje formal, una parametrizacion del conjunto algebraico afin formado por la familia de leyes filiformes de dimension 11; posteriormente, se presenta tambien una parametrizacion de la familia de leyes filiformes de dimension 12. cuando se considera la filtracion natural que produce la sucesion central descendente de un algebra de lie nilpotente, se obtiene un algebra graduada finita que, en cierto modo, constituye el «esqueleto» del algebra que se considera. estas algebras graduadas estan determinadas en el caso filiforme. Las algebras casifiliformes son las que tienen una sucesion caracteristica inmediatamente inferior a las filiformes. en la segunda parte de esta memoria se obtiene la clasificacion de las algebras graduadas casifiliformes en cualquier dimension finita. los resultados dan una explicacion al diferente grado de dificultad en la clasificacion de las algebras de lie filiformes y casifiliformes, en terminos del numero de algebras graduadas no isomorfas que se obtienen.

 

Datos académicos de la tesis doctoral «Familias de leyes de algebras de lie nilpotentes.«

  • Título de la tesis:  Familias de leyes de algebras de lie nilpotentes.
  • Autor:  Antonio Jimenez Merchan
  • Universidad:  Sevilla
  • Fecha de lectura de la tesis:  01/01/1995

 

Dirección y tribunal

  • Director de la tesis
    • José Ramon Gomez Martin
  • Tribunal
    • Presidente del tribunal: Echarte Reula Francisco Javier
    • Felipe Sánchez Mateos (vocal)
    • Michel Goze (vocal)
    • Francisco Torres Lopera (vocal)

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio