Grupos de atutomorfismos de predicados computablemente enumerables y endomorfismos de numeraciones

Tesis doctoral de Elias Fernandez-combarro Alvarez

En esta memoria se usan conceptos algebraicos para estudiar objetos de la teoria de la computabilidad. asi, se construyen numeraciones (es decir, codificaciones de conjuntos mediante numeros naturales cuyo semigrupo de endomorfismos es minimo en algun sentido y se caracterizan las numeraciones negativas mediante una clase de sistemas de ecuaciones. tambien se estudian los automorfismos de la funcion universal computable, mostrando que todos ellos son recursivos.

 

Datos académicos de la tesis doctoral «Grupos de atutomorfismos de predicados computablemente enumerables y endomorfismos de numeraciones«

  • Título de la tesis:  Grupos de atutomorfismos de predicados computablemente enumerables y endomorfismos de numeraciones
  • Autor:  Elias Fernandez-combarro Alvarez
  • Universidad:  Oviedo
  • Fecha de lectura de la tesis:  28/04/2001

 

Dirección y tribunal

  • Director de la tesis
    • Consuelo Martinez Lopez
  • Tribunal
    • Presidente del tribunal: Barja perez José María
    • Antonio Bahamonde rionda (vocal)
    • andrei Morozov (vocal)
    • cesar Alonso gonzalez (vocal)

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio