Tesis doctoral de Lourdes Rodriguez Mesa
En la tesis se investiga la convergencia puntual de las integrales parciales de hankel. se introducen los llamados espacios de lipschitz-hankel y de besov-hankel, que son caracterizados mediante las integrales parciales de hankel y las medias de bochner-riesz. se discute la integrabilidad de las transformadas de hankel de funciones en oportunos espacios de lipschitz-hankel. Se analiza el comportamiento de la transformacion y la convolucion de hankel sobre distribuciones de crecimiento exponencial. Se consideran las ecuaciones de convolucion hankel en espacios de funciones generalizadas de crecimiento lento y exponencial, introduciendo el concepto de hipoelipticidad para los operadores de convolucion hankel y caracterizandolo a traves del crecimiento de la transformada de hankel de tales operadores. Se introducen nuevos espacios de distribuciones transformables hankel, que son identificados con cierta clase de operadores que conmutan con la convolucion de hankel.
Datos académicos de la tesis doctoral «La transformacion integral y la convolucion de hankel de funciones y distribuciones.«
- Título de la tesis: La transformacion integral y la convolucion de hankel de funciones y distribuciones.
- Autor: Lourdes Rodriguez Mesa
- Universidad: La laguna
- Fecha de lectura de la tesis: 01/01/1997
Dirección y tribunal
- Director de la tesis
- Betancor Pérez Jorge Juan
- Tribunal
- Presidente del tribunal: Mendéz Pérez José Manuel
- Felix Lopez Fernandez-asenjo (vocal)
- Joan Lluís Cerdí Martín (vocal)
- ángel Rodríguez Palacios (vocal)