Metodos multimalla para discretizaciones de orden alto en problemas de conveccion-difusion.

Tesis doctoral de Gaspar Lorenz Francisco Jose

Si la matriz de coeficientes obtenida en la discretizacion de un problema eliptico es una m-matriz, los metodos multimalla son metodos de resolucion muy eficientes. Sin embargo, los esquemas de orden alto que se emplean para el termino convectivo no dan lugar, en general, a m-matrices. Normalmente, las discretizaciones basadas en k-esquemas se resuelven indirectamente con una tecnica de correccion de defecto. Uno de los inconvenientes es, en general, su lentitud de convergencia. en esta memoria, se presentan nuevos suavizados linea a linea para resolver directamente las dicretizaciones de orden alto. Estos suavizadores son analizados teoricamente por analisis de fourier. Tambien se presenta una nueva variante, especial para la programacion en paralelo, el suavizador cebra de tres colores. Los nuevos metodos multimalla se han aplicado, tanto a problemas escalares de conveccion-difusion como a las ecuaciones de navier-stokes incomprensibles. Tambien los nuevos metodos son analizados sobre mallas refinadas. palabras clave: multimalla, conveccion-difusion, navier-stokes.

 

Datos académicos de la tesis doctoral «Metodos multimalla para discretizaciones de orden alto en problemas de conveccion-difusion.«

  • Título de la tesis:  Metodos multimalla para discretizaciones de orden alto en problemas de conveccion-difusion.
  • Autor:  Gaspar Lorenz Francisco Jose
  • Universidad:  Oviedo
  • Fecha de lectura de la tesis:  01/01/1997

 

Dirección y tribunal

  • Director de la tesis
    • Antonio Pascau Benito
  • Tribunal
    • Presidente del tribunal: Benjamin Dugnol Alvarez
    • Luis Ferragut Canals (vocal)
    • Felipe Petriz Calvo (vocal)
    • José M. Franco Garcia (vocal)

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio