Modificaciones del algoritmo de grado minimo para la resolucion de sistemas sparses.

Tesis doctoral de Carmelo Herrera Sanchez

Al resolver un sistema de ecuaciones lineales ax = b en el que la matriz que define al sistema es sparse, el orden en el que se tratan las filas o columnas tienen una importancia fundamental trabajar con matrices reordenadas en las que el numero de elementos de relleno (efecto fill-in) se reduce presenta una serie de ventajas interesantes como son: disminucion de memoria que se ha de reservar para los nuevos elementos que se haran distinos de cero en el proceso de factorizacion, asi como la disminucion del numero de operaciones a realizar y por consiguiente se disminuira el tiempo total de resolucion del sistema.Para definir una ordenacion optima, es necesario tener en cuenta la estructura de la matriz, asi como el almacenamiento de la matriz y el tipo de operaciones a realizar. El caso de que la matriz del sistema a resolver sea simetrica y definida positiva, como lo son el tipo de matrices utilizadas en esta tesis uno de los metodos de ordenamiento que hemos utilizado es el algoritmo de grado minimo. como dicho algoritmo hemos conseguido una disminucion muy sustancial del relleno de la matriz, asi como, una gran mejora en el tiempo de resolucion. A los distintos problemas tratados en la tesis, les hemos pasado los algoritmos icm, grado minimo simple asi como el grado minimo multiple y hemos comprobado la reduccion del efecto fill-in. Cuando hemos comparado el grado minimo simple y el multiple hemos obtenido casi el mismo efecto fill-in, pero hemos reducido mucho el tiempo de resolucion del sistema. por ultimo, en cuanto a las futuras lineas de investigacion, seria aplicar las tecnicas de ordenacion a matrices que no sean simetricas, ni aun definidas positivas, y tambien adaptar estas tecnicas de ordenamiento a otras ramas de la ciencia, como pueden ser la psicología (psicometria), asi como en las ciencias economicas (econometria).

 

Datos académicos de la tesis doctoral «Modificaciones del algoritmo de grado minimo para la resolucion de sistemas sparses.«

  • Título de la tesis:  Modificaciones del algoritmo de grado minimo para la resolucion de sistemas sparses.
  • Autor:  Carmelo Herrera Sanchez
  • Universidad:  Palmas de gran canaria
  • Fecha de lectura de la tesis:  01/01/1996

 

Dirección y tribunal

  • Director de la tesis
    • Pedro Almeida Benitez
  • Tribunal
    • Presidente del tribunal: Gabriel Winter Althaus
    • Vicente Novo Sanjurjo (vocal)
    • Franco Brañas José Ramon (vocal)
    • Jimenez Olivo Pedro José (vocal)

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio