Tesis doctoral de Nicolás Enrique Rojas Libreros
Esta tesis aborda el problema de análisis de posición de cadenas cinemáticas, mecanismos con cuerpos rígidos (enlaces) interconectados por pares cinemáticos (articulaciones). Este problema, de naturaleza geométrica, consiste en encontrar los modos de ensamblaje factibles que una cadena cinemática puede adoptar. Un modo de ensamblaje es una transformación relativa posible entre los enlaces de una cadena cinemática. Los métodos reportados en la literatura para la solución del análisis de posición de cadenas cinemáticas se pueden clasificar como gráficos, analíticos o numéricos. los enfoques gráficos son geométricos y se diseñan para resolver problemas particulares. Los métodos analíticos y numéricos tratan con cadenas cinemáticas de cualquier topología y traducen el problema geométrico original en un sistema de ecuaciones cinemáticas que define la ubicación de cada enlace, basado generalmente en ecuaciones de bucle independientes. En los enfoques analíticos, el sistema de ecuaciones cinemáticas se reduce a un polinomio, conocido como el polinomio característico de la cadena cinemática, utilizando diferentes métodos de eliminación. En los métodos numéricos, el sistema se resuelve utilizando, por ejemplo, la continuación polinomial o procedimientos basados en intervalos. en cualquier caso, el uso de ecuaciones de bucle independientes, un estándar en cinemática de mecanismos, rara vez ha sido cuestionado a pesar de que el sistema resultante de ecuaciones es bastante complicado, incluso para cadenas simples. Por otra parte, establecer el análisis de la posición de cadenas cinemáticas directamente en términos de poses, con o sin el uso de ecuaciones de bucle independientes, presenta dos inconvenientes: sistemas de referencia arbitrarios deben ser introducidos, y todas las fórmulas implican traslaciones y rotaciones de forma simultánea. Esta tesis se aparta de este enfoque estándar expresando el problema de posición original como un sistema de restricciones basadas en distancias, en lugar de directamente calcular posiciones cartesianas. Estas restricciones son posteriormente resueltas con procedimientos analíticos y numéricos adaptados a sus particularidades. con el propósito de desarrollar los conceptos básicos y la teoría del enfoque propuesto, esta tesis se centra en el estudio de las cadenas cinemáticas planas más fundamentales, a saber, estructuras de baranov, cadenas cinemáticas de assur, y cadenas cinemáticas de grí¼bler. Los resultados obtenidos han demostrado que las técnicas desarrolladas son herramientas prometedoras para el análisis de posición de cadenas cinemáticas y problemas relacionados. Por ejemplo, usando dichas técnicas, los polinomios característicos de la mayoría de las estructuras de baranov catalogadas se puede obtener sin realizar eliminaciones de variables o sustituciones trigonométricas, y utilizando solo álgebra elemental. Un resultado en claro contraste con las complejas eliminaciones de variables que se requieren cuando se utilizan ecuaciones de bucle independientes. el impacto del resultado anterior es mayor porque se demuestra que el polinomio característico de una estructura de baranov, derivado con las técnicas propuestas, contiene toda la información necesaria y suficiente para resolver el análisis de posición de las cadenas cinemáticas de assur que resultan de la sustitución de algunas de sus articulaciones de revolución por articulaciones prismáticas.
Datos académicos de la tesis doctoral «Distance-based formulations for the position analysis of kinematic chains«
- Título de la tesis: Distance-based formulations for the position analysis of kinematic chains
- Autor: Nicolás Enrique Rojas Libreros
- Universidad: Politécnica de catalunya
- Fecha de lectura de la tesis: 20/06/2012
Dirección y tribunal
- Director de la tesis
- Federico Thomas Arroyo
- Tribunal
- Presidente del tribunal: Luis Basáñez villaluenga
- marco Ceccarelli (vocal)
- oscar Altuzarra maestre (vocal)
- José María Porta pleite (vocal)