Tesis doctoral de Javaloyes Victoria Miguel ángel
El contenido de la memoria está integrado por tres partes diferenciadas. en la primera, se estudia la condición delta h=lambda h en levantamiento mediante sumersiones pseudo-riemannianas. en la segunda parte, se estudian lagrangianos cuya función lagrangiana depende de las curvaturas de frenet. Las curvas críticas de estos lagrangianos han sido propuestas y utilizadas por m. Plyushchay para modelizar partículas relativistas. En este trabajo se hace un estudio general del caso en que el espacio ambiente es un espacio modelo de dimensión tres, obteniendo las curvas de forma explícita en algunos casos mediante los campos de kiling y en otros mediante las fibraciones de hopf. En espacios modelo de dimensión mayor que 3 se analiza el caso en que la función lagrangiana depende linealmente de la segunda curvatura obteniendo explícitamente las curvas críticas en dimensión 4. También se estudia el caso en que el lagrangiano depende linealmente de la primera y tercera curvaturas, pero en este caso sólo se obtienen las curvaturas. en la última parte, se estudia la existencia de trayectorias t-periódicas de la fuerza de lorentz en una variedad lorentziana que está dotada de una determinada métrica, que verifica ciertas restricciones. Aplicando la teoría del punto crítico y haciendo uso de la métrica de kaluza-klein se demuestra efectivamente la existencia de tales trayectorias.
Datos académicos de la tesis doctoral «Sumersiones pseudo-riemannianas y modelos geométricos de partículas relativistas«
- Título de la tesis: Sumersiones pseudo-riemannianas y modelos geométricos de partículas relativistas
- Autor: Javaloyes Victoria Miguel ángel
- Universidad: Murcia
- Fecha de lectura de la tesis: 26/02/2004
Dirección y tribunal
- Director de la tesis
- ángel Ferrández Izquierdo
- Tribunal
- Presidente del tribunal: manuel Barros García
- Garay bengoechea oscar Jesús (vocal)
- María Candela anna (vocal)
- Miguel Sánchez caja (vocal)