Tesis doctoral de Miguel González Andrés
En esta tesis se demuestra que las cintas, i.E., Estructuras dobles asociadas a un fibrado de línea e sobre su soporte reducido, una curva proyectiva lisa e irruducible de género arbitrario, son alisables si tienen género aritmético mayor o igual que 3 y la curva soporte admite un recubrimiento doble liso e irreducible con módulo de traza cero asociado e. el método usado se ha basa en las técnicas infinitesimales que se desarrollan para probar que si la curva soporte admite un tal recubrimiento doble entonces cada cinta sumergida sobre la curva es infinitesimalmente alisable, i.E., se puede obtener como fibra central de la imagen de alguna deformación infinitesimal de primer orden del morfismo composición del recubrimiento doble y la inmersión del soporte reducido en el espacio proyectivo ambiente que contiene a la cinta. se obtienen también inmersiones en el mismo espacio proyectivo para todas las cintas asociadas a e. entonces, suponiendo la existencia del recubrimiento doble, se demuestra en qué condiciones se puede extender el alisamiento infinitesimal a un alisamiento global sumergido. como consecuencia se obtienen los resultados de alisamiento.
Datos académicos de la tesis doctoral «Aislamiento de cintas sobre curvas«
- Título de la tesis: Aislamiento de cintas sobre curvas
- Autor: Miguel González Andrés
- Universidad: Complutense de Madrid
- Fecha de lectura de la tesis: 21/06/2004
Dirección y tribunal
- Director de la tesis
- Gallego Rodrigo Francisco Javier
- Tribunal
- Presidente del tribunal: ignacio Sols lucia
- laura Costa farras (vocal)
- eduardo Sernesi (vocal)
- roberto Muñoz izquierdo (vocal)